Pomega P

Energy Storage for Power Plants

Smart, Secure, and Efficient Energy Management

Pomega integrates security, performance, and efficiency in energy management through EMS and BMS software developed by local engineers. Our systems continuously monitor the voltage, current, and temperature of battery ells, optimizing charge and discharge processes, reducing consumption costs by learning energy usage patterns, and ensuring maximum safety through real-time component monitoring. Cell balancing extends battery life and enhances operational efficiency while keeping system security a top priority at all times.

Energy Storage Systems: A Key Enabler of Renewable Integration

The intermittent nature of renewable energy sources, such as solar and wind, poses a challenge in maintaining grid stability and meeting baseload demand. Traditional power grids rely on consistent baseload power from fossil fuel-fired plants, but renewable energy sources can contribute significantly to grid stability if effectively integrated.

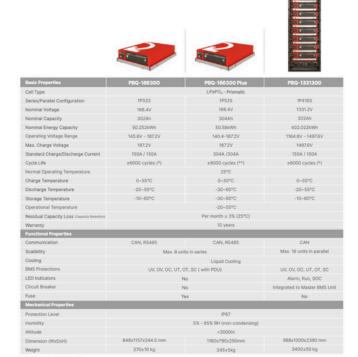
Energy storage systems offer a transformative solution by enabling the storage of excess renewable energy when production is abundant and its distribution when demand peaks. This ability to store and dispatch energy on demand mitigates the intermittency of renewable sources, making them more predictable and reliable.

As the world transitions towards a sustainable energy future, energy storage systems assume a pivotal role in reducing reliance on fossil fuels and accelerating the integration of renewable energy sources. By enabling a more stable and reliable power grid, energy storage systems are paving the way for a cleaner and more sustainable future.

- Uygulamalar
- Peak Shaving
 Load / Peak Shifting
- Spinning Reserve Displacer Ramp Rate Control Ramp Rate Control
 Frequency Regulation
- Energy ArbitrageBlack-Start
- O UPS / Bridging Power

Stand-Alone Energy Storage

Embrace the Future of Energy Storage


Standalone energy storage facilities are essential for meeting the increasing demand for reliable energy storage as renewable energy sources gain prominence. These facilities capture excess renewable energy, contributing to grid stability and sustainability.

They offer comprehensive solutions that optimize energy utilization and reduce costs, providing a reliable energy source for both the national grid and new power plant investments. Equipped with advanced technology, these facilities ensure 24/7 monitoring and control for optimal performance. Key benefits include enhanced grid stability, scalability to meet evolving energy storage needs, cost-effectiveness, and reliability. These facilities are crucial for enabling a resilient and sustainable grid as the world transitions to cleaner energy sources.

X.		
, a	1	71/61
Applications		
Advanced Energy Mar	nagement O Long Lifetime	 Expandable Capaci
Off-Grid & On-Grid Ap	oplications • Reliable and Safe	Technology

High Voltage Liquid-Cooled Batteries

High Voltage Liquid Cooled Battery Containers

Pomega P

Basic Properties	PBQ20-416-1C	
Cell Type	LiFePO ₄ - Prismatic	
Series/Parallel Configuration	10P416S	
Nominal Voltage	1331.2V	
Nominal Current	304Ah	
Nominal Energy Capacity	4046kWh	
Operating Voltage Range	1123.2V - 1497.6V	
Max. Charge Voltage	1497.6V	
Cycle Life (*)	≥6000 cycles	
Operational Temperature	-30~50°C	
Functional Properties		
Communication	CAN	
Cooling	Liquid Cooling (Integrated Closed Loop)	
Fire Protection	Aerosol automatic fire protection, water mist	
BMS Protections	UV, OV, OC, UT, OT, SC	
LED Indicators	Alarm, Run, SOC	
Circuit Breaker	Integrated to Master BMS of Each Cluster 1500 V	
EMS	Optional	
Physical Properties		
Protection Level	IP54	
Humidity	0% - 85% RH (non-condensing)	
Altitude	s2000m	
Dimension (WxDxH)	6800x2550x2896 mm	
Weight	40 Tons	